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Hippocampal cells are central to spatial and predictive represen-
tations, and experience replays by place cells are crucial for
learning and memory. Nonetheless, how hippocampal replay
patterns dynamically change during the learning process remains
to be elucidated. Here, we designed a spatial task in which rats
learned a new behavioral trajectory for reward. We found that as
rats updated their behavioral strategies for a novel salient loca-
tion, hippocampal cell ensembles increased theta-sequences and
sharp wave ripple-associated synchronous spikes that preferen-
tially replayed salient locations and reward-related contexts in re-
verse order. The directionality and contents of the replays
progressively varied with learning, including an optimized path
that had never been exploited by the animals, suggesting priori-
tized replays of significant experiences on a predictive map. Online
feedback blockade of sharp wave ripples during a learning process
inhibited stabilizing optimized behavior. These results implicate
learning-associated experience replays that act to learn and rein-
force specific behavioral strategies.
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To adapt to continuous changes in the external environment,
animals need to encode new salient episodes and update

their behavioral policy. To achieve flexible spatial navigation in
particular, hippocampal place cells are thought to provide fun-
damental neural spatial coding and constitute a cognitive map
(1). Recently, the view of the cognitive map has been proposed
to extend to a predictive map theory in which place cells po-
tentially encode expectations about an animal’s future states (2).
In addition to these map representations, hippocampal place
cells that encode animals’ past or future trajectories are se-
quentially activated during sharp wave ripples (SWRs) within a
short time window (∼100 ms) in a phenomenon known as “place
cell replays” (3–5). The time window of such SWR-associated
sequential firing is potentially appropriate to induce plastic
changes in the hippocampal circuit. Consistent with this idea, a
growing amount of evidence demonstrates that the frequency of
SWR-associated place cell replays (or reactivation) is promi-
nently increased during learning of new experiences (online re-
plays) (6) and during rest/sleep states after learning of new
experiences (offline replays) (7). In addition, selective disruption
of waking SWRs during spatial learning has been demonstrated
to reduce subsequent task performance (8) and impair the sta-
bilization and refinement of place cell maps (9). Taken together,
these results suggest an essential role of SWR-associated replays
of an animal’s experiences in novel spatial learning.
Experience replays by place cells are also suggested to be a key

neuronal basis for a reinforcement learning framework (10, 11).
When agents encounter a prediction error, such as a change in
reward, experience replays may be an efficient mechanism for
the evaluation of their experienced action–outcome associations
by providing a solution to the temporal credit assignment prob-
lem, which is helpful to update their behavioral policy to maxi-
mize future reward (12, 13). In line with this idea, empirical

observations have demonstrated that the receipt of reward or
novel experiences leads to increased rates of SWRs and coor-
dinated reactivation of place cells (6, 14), and increased reward
leads to increased reverse replays (4, 15).
Despite accumulating evidence and theory, the field still lacks

key insights into how the contents of place cell replays change to
(re)assign the values of salient locations as animals develop new
navigation strategies in response to environmental changes.
Theoretical works demonstrate that incorporating replay algo-
rithms with prioritized memory access for learned salient loca-
tions (16), rather than random access from all stored memory,
into a reinforcement learning architecture—a strategy termed
“prioritized experience replays” (17)—improves integrative
learning in artificial agents. Whether living neuronal networks
adopt the same computations to enhance learning capability
remains an open question. To address this issue, we designed a
spatial learning task requiring rats to learn new spatial navigation
within a recording period within an hour, and analyzed how
hippocampal replays of salient locations associated with learning
progressively varied with the animal’s learning processes.

Results
A Spatial Learning Task. In this study, rats performed a spatial task
in which they ran from a starting (S) area to checkpoint 1 (C1)
(path S-C1), where they received a small (20 μL chocolate milk)
reward, and then ran from C1 to a goal (G) area (path C1-G),
where they received a large (200 μL chocolate milk) reward
(Fig. 1A and SI Appendix, Fig. S1 A–D). On a recording day, after
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the animals were well trained on this task, the rats first per-
formed the same task, termed the “prelearning phase.” After 11
to 14 trials, the reward was replaced to a new checkpoint (C2)
(Fig. 1 A, Right), requiring the rats to learn new trajectories
through trial and error. After the replacement, the rats first
persisted in traversing path S-C1-G, the previous efficient tra-
jectory; however, the reward was no longer presented. In an
initial learning phase, the rats visited C2 via path G-C2 after
taking path S-C1-G. As the learning phase proceeded, the rats
gradually spent less time on path S-C1-G and instead settled on
the most efficient trajectory, path S-C2-G (Fig. 1 B–E; for all rats,
see SI Appendix, Fig. S2). For each rat, a learning point was
determined based on a moving-average learning curve, and the
periods before and after the learning point were termed the
“learning phase” and the “postlearning phase,” respectively. The
rats required 26 ± 9 trials (∼30 min) to progress from reward
replacement to the learning point (n = 5 rats). In total, paths
S-C1, C1-G, G-C2, S-C2, and C2-G accounted for 93.9% of all
animal trajectories (Fig. 1 F and G). Compared with previous
work, the concepts of this task were that 1) the consistency of
task demands, irrespective of the locations of check points, en-
abled us to extract spatial and context-dependent neuronal codes
(18, 19), and 2) an obvious learning point and the animals’
learning-dependent trajectories enabled us to analyze detailed
hippocampal replay patterns associated with the rats’ internal
evaluations of behavioral strategies.

Spatial and Context-Dependent Spikes of Hippocampal Cells. While
the rats performed the spatial learning task, the spike patterns of
355 neurons in the dorsal hippocampal CA1 region were recor-
ded with independently movable tetrodes from the five rats
(Fig. 2A and SI Appendix, Fig. S3). Some place cells had multiple
place fields distributed throughout the environment (Fig. 2 B–E;
for all place fields, see SI Appendix, Figs. S3F and S4G). To
examine learning-induced changes in the place field locations, all
place fields from a single cell were visualized by joint plots
(Fig. 2D; for all cells, see Fig, 2E and SI Appendix, Fig. S4 A–C).
Based on the locations of place fields on the joint plots, we de-
fined change characteristics for each place field. The majority of
place fields were stable irrespective of learning (green regions in
Fig. 2 D and E); however, a subset of new place fields emerged or
disappeared in subsequent phases (SI Appendix, Fig. S4B). In
addition to these place fields, high-density plots were detected
for path S-C1 vs. S-C2, path G-C2 vs. S-C2, path S-C1 vs. G-C2
(approaching check points), and path C1-G vs. C2-G
(approaching the goal area) (yellow regions in Fig. 2 D and E).
The same tendencies were confirmed by population vector cor-
relation matrices (Fig. 2F and SI Appendix, Fig. S3 C–E). These
place fields that commonly emerged during an identical behav-
ioral step are consistent with the findings of start-related (or path
integration-based) and goal-directed spatial coding, reported in
previous studies (20–23), and here considered as context-
dependent fields (Fig. 2C), indicating generalized memory
maps are formed within the hippocampal circuit. The propor-
tions of place cells with stable and context-dependent place fields

Fig. 1. Behavioral performance in the spatial learning task. (A) Overview of the task. The rat first took a trajectory from the start to the goal area via C1,
where a reward was placed (path S-C1-G; prelearning phase). The areas were separated by automatic doors. The reward point was then changed to C2, and
the rat learned to take a new trajectory via C2 (learning phase). (B) Representative trajectories observed from a single rat (all trajectories are shown in SI
Appendix, Fig. S2A). The black and red vertical lines indicate reward replacement and a learning point defined based on a learning curve, respectively. Trial
numbers are indicated below the images. (C) Changes in running distance, duration, and string length for the rat. (D) Five paths analyzed. (E) Changes in
string length for the rat. The black and red horizontal lines indicate the replacement and learning points, respectively. (F) Proportions of paths taken by all
five rats. (G) Changes in the number of paths per trial. The colors correspond to the paths in D. The thin shaded regions indicate the SEM.
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were 47.3% (112 of 237) and 48.9% (116 of 237), respectively
(Fig. 2G and SI Appendix, Fig. S4E). Even when all these cell
types, varying depending on different learning phases, were in-
cluded in the analysis, Bayesian decoding could still accurately
reconstruct the rat’s actual positions, even in similar contexts,
from the position tuning curves of the cells at population levels
(Fig. 2 H and I and SI Appendix, Fig. S3G) (P < 0.05, Mann–
Whitney U test versus shuffled data, U = 7317960132.5).
To examine the possibility of plastic changes in the hippo-

campal circuit, we analyzed whether learning of new behavioral

trajectories was related to a theta-sequence in which spatial fir-
ing of the place cells was organized in sequences within a theta-
cycle (Fig. 2J) (24), which is considered a neuronal substrate that
encodes immediate future and past locations and induces syn-
aptic plasticity for memory acquisition during novel experiences
(25). To quantify theta-sequence, quadrant scores were com-
puted, which represent the strength of the theta-sequences. In all
paths in the field and the return path during the learning phase,
quadrant scores were significantly higher than those during the
prelearning phase (Fig. 2K and SI Appendix, Fig. S5) (P < 0.05,

Fig. 2. Spatial and context-dependent coding of hippocampal cells in the spatial learning task. (A) (top to bottom) Original local field potential (LFP), ripple
band (150 to 250 Hz)-filtered LFP, raster plots showing the spike patterns of 114 neurons, arrowheads indicating synchronous events in the raster plot, and
animal running speed in a trial during the postlearning phase. Place cells were ordered by their place-field locations. (B) Spatial firing of a place cell with both
stable and context-dependent properties. Spike positions are represented as red dots superimposed on the trajectories (gray). This cell showed stable spatial
representations on path S-C1 and specifically fired when the rat approached C1 or C2. (C) Definition of context-dependent firing. The trajectories shown on
the left and right are common as the rats move toward the checkpoint (C1 or C2) and the goal, G, respectively. (D) Spatial firing rate distributions and the
locations of place fields (shown as a red asterisk) of the place cell in B in the prelearning and learning phases are presented in the bottom and left, re-
spectively. Joint place-field locations are plotted by black asterisks, representing the locations of all place-field pairs in different phases (green, stable; yellow,
context-dependent). (E) All joint plots from all place cells. (F) Spatial correlation matrix of the population vector pairs at all location bins. (G) Summary of
firing properties from all recorded cells (on, yellow; off, violet). (H) Bayesian decoding of rat trajectories from place cell spikes. Posterior probabilities of
position estimates represented by a hot scale; position estimates overlaid with actual animal positions (cyan lines). (I) Errors of animal location estimates
computed from datasets within each phase (cyan) or those averaged over all phases (magenta) by leave-one-out cross-validation: *P < 0.05, Mann–Whitney U
test followed by Bonferroni correction. (J) Average posterior probabilities of rat positions while running on a path as described above: the x axis shows the
phases of two theta-cycles (white lines), and the y axis shows the positions relative to the current animal’s location. (K) Comparison of quadrant scores of
theta-sequences across paths and phases: *P < 0.05, Tukey’s test.
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Tukey’s test; the significance between the novel path S-C2 and
path S-C1 in the prelearning phase was similarly observed even
when Rat 1 with the largest number of cells was excluded). These
results mean that the strength of theta-sequences becomes
higher not only on novel paths (paths S-C2-G and G-C2) but also
on previous paths or familiar paths (e.g., path S-C1-G and the
return path) when animals need to learn novel spatial behavior.
In the postlearning phase, the quadrant scores in path S-C2
remained significantly higher (P < 0.05, Tukey’s test). The
learning-induced stronger theta-sequences suggest increased
cholinergic signals and plasticity in the hippocampal circuits
during an entire learning phase.

Learning-Dependent Synchronous Events of Hippocampal Cell Spikes.
We next analyzed how new spatial learning is related to SWR-
associated synchronous spikes of neuronal populations within a
short (∼100 ms) time window when animals stopped, termed
“synchronous events” (Fig. 3A and SI Appendix, Fig. S6 A–D). In
the prelearning phase, synchronous events were temporally
sparse, with average frequencies below 0.4 Hz (Fig. 3B and SI
Appendix, Fig. S7 A–J). The frequencies of synchronous events
and SWRs in the learning and postlearning phases were quan-
tified by the hierarchical Bayesian modeling with Markov chain
Monte Carlo (MCMC) methods to take differences in the
number of trials and events across individual rats into account
(SI Appendix, Fig. S6E). We found that these events became
noticeably higher in the open field and goal area compared with
the prelearning phase (Fig. 3 B–D and SI Appendix, Fig. S7J) (the
distributions computed by the hierarchical Bayesian modeling
with MCMC methods exhibited overlaps of less than 5%). The
numbers of synchronous events did not significantly differ across
the learning subphases (SI Appendix, Fig. S7B). On the next day
(day 2) after learning, such SWR increases were no longer ob-
served, and the frequencies were comparable to those in the
prelearning phase (SI Appendix, Fig. S8), confirming that novel
learning was necessary to enrich synchronous events.
To examine the changes in neuronal ensemble patterns in-

volved in synchronous events, correlation coefficients of vector-
ized population spikes were computed between synchronous
events (SI Appendix, Fig. S9A). Event-to-event and trial-to-trial
correlations changed substantially from learning (SI Appendix,
Fig. S9 B–F), demonstrating that learning recruited new cell
ensembles in synchronous events. To analyze the detailed be-
havioral episodes represented by these synchronous events,
Bayesian decoding was applied to estimate the animal trajecto-
ries (Fig. 3E, SI Appendix, Fig. S10, and Movie S1), and the
representation rates (reprates) for the individual paths were
computed as their posterior probabilities (Fig. 3F, SI Appendix,
Fig. S11, and Movie S2). The majority of synchronous events had
a representation rate at a particular path segment that was
prominently higher than those of the other segments (SI Ap-
pendix, Fig. S11 F–L), demonstrating that most of the synchro-
nous events primarily represented one path segment. For each
synchronous event, a represented path was defined as the path
with the highest reprate. In the prelearning phase, the majority of
the represented paths were paths S-C1, C1-G, and the return
path, corresponding with the actual trajectories taken by the
animals. During the learning phase, paths G-C2 and C2-G be-
came the majority of represented paths (Fig. 3G and SI Appen-
dix, Fig. S11C), corresponding to the animal’s trial-and-error
running behavior along path G-C2-G (Fig. 1 E–G). Notably,
during the last one-third of the learning phase—before the rats
finally settled on path S-C2-G—the largest fraction of synchro-
nous events changed to represent path S-C2 (Fig. 3 G and H)
(overlaps of the distributions computed by the hierarchical
Bayesian modeling with MCMC methods were less than 5%),
and such dynamic changes in representation patterns were more
apparent in the open field than in the start and goal areas

(Fig. 3I). These results demonstrate that future efficient behav-
ioral episodes were already represented by synchronous events
even before the animals changed their behavioral strategy. The
fact that it took several trials (16.4 ± 19.5 trials; mean ± SD)
from the onset of increases in the representation of path S-C2 to
the actual learning point (SI Appendix, Fig. S11E) suggests that
hippocampal replay patterns do not necessarily lead to imme-
diate changes in behavioral patterns. In addition, few observa-
tions of passes on path S-C2 in the last one-third of the learning
phase (Figs. 1G and 3G and SI Appendix, Fig. S2C) suggest that
rats’ internal simulations of efficient behavioral strategies, rather
than actual behavioral experiences, primarily determine hippo-
campal replay patterns.
Another notable observation was that synchronous events

more preferentially represented paths G-C2 and S-C2, where a
reward (20 μL) newly emerged at the destination (C2), than path
C2-G, where the a reward (200 μL) was continuously presented
at the well-known destination (goal area), which indicates that
novel reward-related action policy, rather than the amount of
reward, determines the priorities of episodes to be represented
by hippocampal synchronous events (14, 15). Taken together,
these results suggest that hippocampal synchronous events pri-
oritize representations of salient episodes in reference to internal
prediction errors and that such representation patterns undergo
dynamic changes as learning proceeds.

Learning-Related Changes in the Directionality of Hippocampal
Replays. To examine whether the learning-associated synchro-
nous events corresponded with replay events consisting of tem-
porally compressed sequential firing of hippocampal cells, the
directionality and sequence strength of the spike trains for each
synchronous event were assessed by computing a weighted cor-
relation (r) and sequence score (rZ), respectively: Synchronous
events where r ≥ 0.5 were considered sequential events that were
classified into forward or reverse replay events (Fig. 4A and SI
Appendix, Fig. S13 A–C). The participation rates of place cells
with stable and context-dependent place fields in synchronous
events were significantly higher than those of the other cells
(Fig. 4B and SI Appendix, Fig. S12 A–C) (P < 0.05, Tukey’s test).
In addition, these cell types contributed significantly to sequen-
tial events, as revealed by their significantly higher per cell
contributions (PCCs) (Fig. 4C and SI Appendix, Fig. S12D)
(t104 = 11.4, t107 = 9.8, t68 = 8.8, t145 = 9.1, P < 0.05, one-sample
t test vs. 0). These results suggest that such stable and context-
dependent representations cooperatively contribute to creating
learning-dependent synchronous events by utilizing similar sets
of hippocampal cells as a learned model for solving the task. In
total, 345 of 2,586 (13.3%) and 390 of 2,586 (15.1%) synchro-
nous events were classified as forward and reverse replay events,
respectively (SI Appendix, Fig. S13A).
Consistent with previous observations (5, 26), sequential re-

play events in the open field were biased toward forward rather
than reverse directions in the prelearning phase, confirming that
forward representations before taking a path primarily emerge in
learned situations (Fig. 4D and SI Appendix, Fig. S13E) (the
overlaps between 0.5 and the distribution computed by the hi-
erarchical Bayesian modeling with MCMC methods were less
than 5%; the similar tendency of replay directionalities was ob-
served but the significance was not detected in all comparisons
when Rat 1 was excluded). On the other hand, this tendency was
reversed after new learning was initiated; the reverse replays
occupied significantly increased fractions in the latter learning
phase, while the directionality of the replay events at the start
and goal areas remained almost unchanged by learning. Espe-
cially, the reverse directionality was prominent in replays of path
G-C2 (SI Appendix, Fig. S13E), a trajectory involved in the novel
reward-related action policy, similar to the prominent increased
representation (Fig. 3G). Overall, the sequential events showed
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learning-dependent changes in the proportions of represented
paths similar to those in Fig. 3G (Fig. 4E and SI Appendix, Fig.
S13D). In addition, we further validated these findings by com-
puting trajectory events from the Bayesian decoding, which was
another analytical method to detect hippocampal replays (5, 27).
A similar tendency in learning-dependent changes in trajectory
events were observed (Fig. 4 F and G and SI Appendix, Fig.
S14D). These results demonstrate that hippocampal experience
replays for the paths utilized in the new situation specifically
developed with animal experience. Such learning-dependent

changes in hippocampal replay patterns may be crucial for
neuronal circuits to precisely reinforce new experiences that
should be prioritized for learning.

Requirement of Learning-Related Hippocampal SWRs in the Stabilization of
Spatial Behavior. In order to test the causal role of SWR-associated
synchronous events in learning performance, real-time disruption of
SWRs was implemented by additionally implanting stimulation into
the ventral hippocampal commissure (vHC); then, closed-loop
feedback electrical stimulation with a single pulse (140 to 180 μA,

Fig. 3. Prioritized representation of new episodes by learning-dependent synchronous events. (A) An SWR-associated synchronous event. (B) Pseudocolor
maps of the average frequencies of synchronous events from all animals and trials, presented for a visualization purpose. The synchronous event locations are
indicated by superimposed white dots. (C) Distributions of the percentage of changes in synchronous events during the learning and postlearning phases
compared to the prelearning phase. A pound sign (#) indicates that 0 is not in the 95% credible interval computed from the posterior probability distribution
by MCMC. (D) Same as C, but separately plotted for the individual areas. (E) Bayesian decoding of animal trajectories from single synchronous events (from
Rat 1). Paths with the highest z-scored representation rates (repZ) are indicated above. The same datasets are magnified and the corresponding raster plots
are presented in Fig. 4A. (F) Color-coded matrices of representation rates for each path by a single rat (the other four rats are shown in SI Appendix, Fig.
S11B). The black and red vertical lines indicate the reward replacement and learning points, respectively. (G) Learning-related changes in the proportions of
represented paths by synchronous events. The learning phase was evenly divided into three phases (first, second, and third learning phases). The thick and
thin shaded areas indicate the 50% and 95% credible intervals, respectively. For comparison, the numbers of passes on path S-C2 per trial, presented in
Fig. 1G, are superimposed by the black line. (H) The data in Gwere specifically analyzed for the last one-third of the learning and postlearning phases. A dollar
sign ($) indicates an overlap of less than 5% with any other distribution. (I) Same as G, but for separately plotted individual areas.
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100 μs) was delivered upon the detection of hippocampal SWRs
(Fig. 5 A and B). Similar to observations reported in earlier studies (8,
9), this manipulation could transiently eliminate SWR-associated
neuronal synchronized events (Fig. 5C). Using this technique, we
found that online disruption of ongoing SWRs after the reward re-
placement during a learning process resulted in unstable animal
trajectories across trials (SI Appendix, Fig. S15 B and C), as demon-
strated by a larger trajectory-to-trajectory distance (Fig. 5 D and E)

and significant increases in the probability of behavioral changes
across two successive trials after the animals first took the most ef-
ficient path (i.e., start-S-C2) (Fig. 5F) (P < 0.05, Tukey’s test). In
contrast, stimulation delivered with a 250-ms delay relative to SWRs,
applied as a delayed control experiment, and feedback stimulation in
a nonlearning control animal group did not evoke such behavioral
changes (Fig. 5 E and F) (P > 0.05, Tukey’s test). There were no
significant differences in the number of trials to reach the learning

Fig. 4. Representations by learning-dependent replay events. (A) Magnified views of the synchronous events shown in Fig. 3E and corresponding raster plots
of the place cell spikes. The spikes are labeled based on cell type. (B) Participation rates of individual cells in synchronous events (n = 112, 116, 74, 154, and 47
cells). The gray dots represent each cell, and the colored lines represent the average: *P < 0.05, Tukey’s test. (C) PCC of individual cells to replay events: $P <
0.05, one-sample t test versus 0. (D) The directionalities of replay events in individual areas. The proportions and statistical significance were computed at each
time point. For a visualization purpose, these different time points were connected. The thick and thin shaded areas indicate the 50% and 95% credible
intervals, respectively. A pound sign (#) indicates that 0.5 is not in the 95% credible interval. (E and F) Learning-related changes in the proportions of the
represented paths by replay events with sequential and trajectory events. (G) The proportion of synchronous events assigned as trajectory events for each
path. The thick and thin shaded areas indicate the 50% and 95% credible intervals, respectively.
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point, the number of trials until the rats first took the path start-S-C2,
and the number of trials from when rats first took the path start-S-C2
to the learning point (SI Appendix, Fig. S15 D–F) (P > 0.05 in all
comparisons, Tukey’s honest significant difference post hoc test). The
observation of SWR disruption-induced behavior deficit implies that
learning-dependent SWRs and replay events support the evaluation
and reinforcement of specific behavioral patterns during a learning
process.

Discussion
In this study, we designed a behavioral task in which rats could
complete new spatial learning within a short recording time (up
to 2 h), which allows us to analyze how hippocampal replay
patterns undergo dynamic changes as the animals updated their
navigational strategy through trial-and-error behavior. The main
points of this study were: 1) That similar sets of hippocampal cells
encoding specific places and behavioral contexts (e.g., approaching a
specific point) are recruited in map representations across different

learning phases; 2) that new spatial learning induces increases in
hippocampal theta-sequences and sequential replays that preferen-
tially represent salient (C2-related) experiences; 3) that the replays
even represented an efficient path before the animals actually
exploited the path; 4) that the contents and directionality (i.e., for-
ward/reverse) of the replays progressively vary depending on learning
phases; and 5) that such learning-related replays are necessary for
stabilizing new optimized behavior.
The start point-related firing (e.g., on paths S-C1 and S-C2)

might be explained by a firing property dependent on path in-
tegration of distance traveled from a specific location (20). On
the other hand, the goal point-related firing (e.g., on paths C1-G
and C2-G) might be partly explained by a firing property de-
scribed as goal-directed (21, 22) and reward-predictive encoding
(23). In addition, hippocampal cells encode information of time
(28–30) and others (31, 32). Taken together, these observations
suggest that hippocampal representations serve as a potential
mechanism to map external environmental information into

Fig. 5. Impairment of learning by inhibition of SWRs. (A) Electrodes were bilaterally implanted in the vHC, and real-time closed-loop electrical stimulation
was applied to disrupt hippocampal SWRs. (B) Schematic of the experiments. Timed or 250-ms delayed stimulation was applied upon SWR detection after
reward relocation (disrupted or delayed control). In the nonlearning control group, the reward point was not relocated, but feedback stimulation was
applied. (C) Original LFP traces, ripple power, and multiunit firing rates aligned to the time of stimulation in the unstimulated, disrupted, and delayed control
groups. The red lines denote the time of stimulation. (D) Representative trajectories in a rat with disrupted SWRs. Trajectory-to-trajectory distances were
computed between all pairs of successive trials. (E) Pseudocolor maps of the trajectory-to-trajectory distance for all individual rats after the animals first took
the path start-S-C2. (F) The probability of trials with an observed distance ≥2 after the animals first took the path start-S-C2: *P < 0.05, Tukey’s test.
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diverse spatial and nonspatial dimensions, as proposed by Aro-
nov et al. (18), and hippocampal neurons are thus regarded as
neuronal elements to represent generalized behavioral proce-
dures and even process abstract factorized codes (19). These
potential ideas over spatial representation could extend a hip-
pocampal predictive map that has been primarily proposed for
spatial information processing (2, 16) to a predictive model that
can process more abstract information, which could further en-
rich predictive computations of task-state values and support
model-based behavior (33).
Previous studies have shown that increases in hippocampal

SWRs and replays are induced by novel experiences (6) and
increased reward (14, 15, 34). Additionally, our observation that
replay events more frequently encoded paths G-C2 and S-C2
(approaching the new checkpoint) than path C2-G (approaching
a well-known goal) suggests that novel reward-related behavioral
strategy, rather than the existence of reward, has the highest
priority to be represented by replay events. Moreover, the ob-
servation of prioritized replays of the optimized path before
updating the animal’s behavioral pattern suggests that internal
simulations of future behavioral strategies, as well as actual be-
havioral experiences, can be incorporated into prioritized re-
plays. At cellular levels, replay events more preferentially
included spatially stable and context-dependent cells, compared
with the other cells. These results suggest that the hippocampal
circuit generates prioritized experience replays by flexibly
recruiting these cell types depending on the demand of learning.
As the animals learned and developed new trajectory patterns,

hippocampal cell ensembles prominently increased theta-
sequences and SWR-associated replay events, both of which
have been considered neurophysiological mechanisms to induce
circuit plasticity (3, 9, 25, 35). Notably, compared with SWR-
associated replays, the increases in theta-sequences were ob-
served at broader areas, such as path S-C1-G and the return path,
indicating that neuronal plasticity in the circuit occurs even when
the animals take previous behavioral strategy that need to be
abandoned or pass through an unchanged environment. The
increases in theta-sequence reflects increased cholinergic signals
throughout the learning phase, which potentially lead to effective
synaptic plasticity when animals detect reward and reward-
related dopaminergic signals are mobilized in the hippocampal
circuit (35). Integration of these synapse-level mechanisms may
enable the hippocampal predictive map to flexibly reorganize to
properly represent varying task states when animals learn new
behavioral policies in reference to their past episodes (2, 16,
36, 37).
In conclusion, the mammalian hippocampal circuit generates

sequential replays with prioritizing salient experiences to effec-
tively amplify and consolidate neuronal ensembles that encoded
new experiences onto the circuit (SI Appendix, Fig. S16). Con-
cordantly, recent studies of artificial intelligence have demon-
strated that incorporating “prioritized experience replays” and
episodic metalearning into deep neural networks could improve
the efficiency of reinforcement learning in artificial agents (11,
12, 17, 36). Taken together, the evidence suggests that rehearsing
salient external interactions by prioritized replays in a learned
model is a common beneficial mechanism for both living brains
and artificial agents to learn and reinforce specific behavioral
strategies.

Materials and Methods
The full methods can be found in SI Appendix

Animals. All experiments were performed with the approval of the experi-
mental animal ethics committee at the University of Tokyo (approval no. P29-
11) and according to the NIH Guidelines for the Care and Use of Laboratory
Animals (38). A total of 17 male Long Evans rats (3- to 6-mo old) with pre-
operative weights of 400 to 500 g were used in this study. The animals were

housed individually and maintained on a 12-h light/12-h dark schedule with
lights off at 7:00 AM. All of the animal subjects were purchased from Japan
SLC. The rats were reduced to 85% of their ad libitum weight by limiting
daily feeding. Water was readily available.

A Spatial Learning Task. Each rat was trained to perform a spatial learning
task. A rat initiated a trial by nose poking in the start area and obtained
sucrose water during cue-sound presentation. Ten seconds after the onset of
the sound presentation, the door between the start area and open field
(door 1) was automatically opened, allowing the rat to enter the field. At
the same time, 20 μL of chocolate milk reward was placed in the lattice
fourth from left and second from bottom, termed checkpoint 1 (C1). The rat
was trained to run from the first lattice after the start area to C1 (path S-C1),
obtain the reward at C1 and then run from C1 to the last lattice before the
goal area (path C1-G). When the rat entered C1, 5-kHz cue sounds were
presented at 10 Hz for 0.3 s followed by continuous 10-kHz cue sounds until
the rat reached the goal area. This sound cue helped a rat recognize that its
current state was correct for obtaining chocolate milk in the goal area.
When the rat reached the goal area after passing through C1, the door
between the field and the goal area (door 2) was opened so that the rat
could enter the goal area. In the goal area, the rat obtained 200 μL of
chocolate milk reward. Twenty seconds after the onset of reward dispen-
sation, the doors between the goal area and peripheral alleyway (door 3)
and the between the peripheral alleyway and start area (door 4) were
opened, allowing the rat to return to the start area through the alleyway to
complete the trial. The next trial started when the rat again poked the re-
ward port in the start area.

On a recording day, the rats first performed the same task with a reward
placed on C1, termed the prelearning phase. After several trials, the rewarded
check point was moved from C1 to the second lattice from the left and fourth
from the bottom, termed checkpoint 2 (C2). In this phase, when the rat visited
C2, 5-kHz cue were played at 10 Hz for 0.3 s followed by continuous 10-kHz
cue sounds were presented until the rat reached the goal area. The chocolate
milk reward volume and all of the other task conditions were similar to those
in the prelearning phase. In this situation, the most efficient behavioral
strategy was to run directly from S to C2 (path S-C2), take the reward placed
on C2, and then run from C2 to G (path C2-G). After the reward replace-
ment, the rats first exhibited trial-and-error behavior for several attempts to
find an efficient trajectory, but they gradually learned to take the most
efficient trajectory: Path S-C2-G. The detailed definition of a learning point is
in SI Appendix.

Surgical Procedures. Five and 12 rats underwent surgery to implant recording
electrodes only and a combination of recording and stimulating electrodes,
respectively (22, 39, 40). Briefly, the rats were anesthetized with isoflurane
gas (0.5 to 2.5%) and an electrode assembly consisting of 16 independently
movable tetrodes was stereotaxically implanted above the right hippocam-
pus (3.8-mm posterior and 2.8-mm lateral to bregma). For some animals, in
addition, stainless bipolar electrodes were implanted at a depth of 3.7 mm
at an angle of 6.9° into the right side or both sides of the vHC (1.3-mm
posterior and 1.7-mm lateral to the bregma). Following surgery, each rat
was housed individually in transparent Plexiglass with free access to water
and food for at least 5 d and was then food-deprived until they reached 85%
of their previous body weight. The electrode tips were slowly advanced by
25 to 100 μm per day for 11 to 24 d until spiking cells were encountered in
the CA1 layer of the hippocampus.

Electrophysiological Recording. Electrophysiological data were sampled at 2
kHz and low-pass–filtered at 500 Hz. Unit activity was amplified and high-
pass–filtered at 750 Hz. Spike waveforms above a trigger threshold (–50 μV)
were time-stamped and recorded at 30 kHz for 1.6 ms.

Closed-Loop Electrical Stimulation.Upon the online detection of SWRs, closed-
loop electrical stimulation was performed using an extension code imple-
mented on the Cerebus recording system (Blackrock) and custom-created C
code. At the time of SWR detection, an electrical pulse with a duration of
100 μs and an amplitude of 140 to 180 μA was applied to the vHC; the
stimulation rate was limited to a maximum of 4 Hz. For delayed control
stimulation, stimulation was applied with a latency of 250 ms after the onset
of ripple detection so that the stimulation occurred outside the
detected SWRs.

Data Availability. Original datasets are available on the Mendeley Data
repository at https://dx.doi.org/10.17632/4xk5w69yr5.1.
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